Labeling Subgraph Embeddings and Cordiality of Graphs

نویسندگان

چکیده مقاله:

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G$ is said to be friendly if $| v_{f}(1)-v_{f}(0) | leq 1$. The friendly index set of the graph $G$, denoted by $FI(G)$, is defined as  ${|e_{f^+}(1) - e_{f^+}(0)|$ : the vertex labeling $f$ is friendly$}$. The full friendly index set of the graph $G$, denoted by $FFI(G)$, is defined as ${e_{f^+}(1) - e_{f^+}(0)$ : the vertex labeling $f$ is friendly$}$. A graph $G$ is cordial if $-1, 0$ or $1in FFI(G)$. In this paper, by introducing labeling subgraph embeddings method, we determine the cordiality of a family of cubic graphs which are double-edge blow-up of $P_2times P_n, nge 2$. Consequently, we completely determined friendly index and full product cordial index sets of this family of graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

Question Answering with Subgraph Embeddings

This paper presents a system which learns to answer questions on a broad range of topics from a knowledge base using few handcrafted features. Our model learns low-dimensional embeddings of words and knowledge base constituents; these representations are used to score natural language questions against candidate answers. Training our system using pairs of questions and structured representation...

متن کامل

PD-prime cordial labeling of graphs

vspace{0.2cm} Let $G$ be a graph and $f:V(G)rightarrow {1,2,3,.....left|V(G)right|}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\ $ d_{uv}= begin{cases} left[frac{f(u)}{f(v)}right] ~~if~~ f(u) geq f(v)\ \ left[frac{f(v)}{f(u)}right] ~~if~~ f(v) geq f(u)\ end{cases} $\ for all edge $uv in E(G)$. For each edge $uv$ assign the label $1$ if $gcd (p_{u...

متن کامل

Super Pair Sum Labeling of Graphs

Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

4-Prime cordiality of some classes of graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره 2

صفحات  79- 92

تاریخ انتشار 2019-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023